HF Transceiver Phase Noise

I did some measurements of the phase noise of several amateur (ham) radio HF transceivers:

In each case, I set the rig to generate about 20 watts output in CW mode (except for the Yaesu FT-817, which was set to 1 watt) and fed the signal through appropriate attenuators to put about +3dBm into a TSC 5120A phase noise analyzer. The phase noise reference source was a 5 MHz Wenzel Ultra Low Noise oscillator. Each transmission was about 5 minutes long, a compromise to get enough data while not overheating the rig.

If you are unfamiliar with phase noise plots, the Y axis is the power contained in a 1 Hz bandwidth, referred to the carrier signal level. The X axis is the frequency offset from the carrier. Note that the X axis is logarithmic, so close offsets are spread out much more than distant ones.

The following charts are animations that hold on each frame for 3 seconds... be patient and you'll see the whole thing! (If you'd like to see the individual images, they are here.

(A byproduct of these tests was frequency stability data that I've plotted here.)

HF Transceivers Compared

SDR-1000 DDS Reference Comparison

I tested the SDR-1000 using its internal 200 MHz oscillator as well as three external 10 MHz references: a Wenzel ULN oscillator, which represents the lowest phase noise source you can buy; an HP Z3801A GPS disciplined oscillator which represents what a "time-nut" ham might use; and a Marconi 2202A signal generator that represents a worst-case scenario. (Note for the purists: the Wenzel oscillator runs at 5 MHz and was doubled to 10 MHz using a Mini-Circuits doubler; the doubler increases the noise by about 6dB over the 5 MHz input, and its performance is documented here.)

This is a zoom of the 100 Hz to 100kHz range to show the interesting behaviour at greater offsets from the carrier (not an animation):

What do these plots tell us?

Well, for very close offsets (less than about 10 Hz), a good 10 MHz oscillator can have much lower noise, even after multiplication in the SDR-1000's DDS chip, than the internal 200 MHz oscillator.

From 10 Hz to about 10 kHz, a very good oscillator like the Wenzel can be a bit better than the internal oscillator, while a more normal oscillator like the Z3801A is slightly, but not dramatically, worse.

From 10 kHz on out, the noise generated by the DDS masks the difference between different 10 MHz oscillators (except the Marconi, which is shown as a worst-case example) and the internal oscillator can be as much as 10dB better.

But, there is something in the SDR-1000 that causes the phase noise, no matter what the reference, to increase starting at about 30 kHz offset. At 100 kHz offset, the internal reference only has a couple of dB advantage over the external references, and even the Marconi performs as well as the other references.

Although the difference is small, it's interesting to note that the Z3801A outperforms the Wenzel ULN; this is odd since the Wenzel is known to be better than the Z3801A. I suspect that different output levels from the various oscillators might cause these small anomalies. Looks like it's time for another experiment to determine how the reference signal level impacts the noise...

Unfortunately, my test system only goes out to 100 kHz offset, so I don't know what happens further out. But some of John, K2OX's measurements show what appears to be a similar bump, and his measurements, which go out to 1 MHz, indicate that the noise starts going back down at about 300 kHz offset. It almost looks like there may be another PLL involved, with a 30kHz bandwidth that operates whether or not the DDS frequency multiplier is being used.