[time-nuts] Advantages & Disadvantages of the TPLL Method

Magnus Danielson magnus at rubidium.dyndns.org
Sat Jun 12 22:15:57 UTC 2010


On 06/12/2010 11:29 PM, Bruce Griffiths wrote:
> WarrenS wrote:
>> subject: Advantages& Disadvantages of the TPLL Method.
>>
>> Here is a new and unique Idea that may be useful for many.
>> Rather than focusing on what some members may or may not already know,
>> or how good or bad one specific working BB configuration is.
>> How about focusing on what the TPLL method can and can not do well.
>> If someone will make a place to post and compile a couple of list,
>> I can start it off with what I've learned so far:
>>
>>
>> DISADVANTAGES of the TPLL method:
>> -------------------------------------------------------
>> #1) The TPLL method is limited by it's reference OSC.
> This isn't necessarily correct, one could use a pair of tight PLL loops
> and use correlation techniques to reduce the contribution of the
> reference oscillator noise.

True. The same technique is being used for LPLL phase noise 
measurements. The reference oscillator will still be a limit, but wither 
you can go below the reference oscillator noise or not is what makes the 
difference. Such a setup costs about twice of a single-channel TPLL. 
Usually there is two ADC channels available.

The cross-correlation processing isn't too hard to achieve and is 
efficiently performed using FFTs and a little support-processing. FFTW 
is a good tool to toss the FFT processing to. The remaining wrapping is 
in a few ten lines of codes or so. Going down the FFT path will give the 
frequency plot for free, getting it back into the time-domain cost extra.

>> The ref osc (or the DUT) needs to have an Analog&/or Digital EFC
>> control input with a bandwidth that is wider than the desired Tau0
>>
>> #2) It basically measures Freq and not Phase differences, and few
>> understand how and why it works so well or it's many advantages.
> This is not true, there is no inherent SNR advantage in measuring
> frequency changes as opposed to measuring phase differences.
> When the phase measurement system and the frequency measurement systems
> being compared have the same noise bandwidth then the measurement floors
> are comparable.
> For example, the TSC5120A is a narrow band system based on measuring
> phase differences with a comparable or lower noise floor than your
> implementation of the tight PLL.
>
> The common technique of using a time interval counter to measure the
> phase difference between 2 RF signals once ever second or so is a
> wideband technique with severe undersampling, consequently the system
> noise floor is much higher than for narrow bandwidth techniques. If the
> phase difference between the 2 signals were measured more frequently and
> digitally low pass filtered the noise will be much lower.

Using time-stamping counters at high rate would be possible if being 
able to cope with the rate of samples. You want a frontend to do that if 
you want to run continously.

As for digital filtering. When doing measurements in the 0,1 - 1000 s 
range for the G.813 measurements, a 10 Hz low-pass filter is being required.

> Since one has to calculate average frequency from the frequency samples
> by integration/averaging this is mathematically equivalent to
> reconstructing the phase change between the start and end of the
> averaging time (Tau0).

Depends on the details. Some counters (SR620 for instance) can have 
biases for frequency data which their time-difference measures do not 
have. A TPLL does not suffer from that particular problem, as it cranks 
out its frequency estimation by a different method.

> One effect of undersampling is to convert (in the sampled data) a
> proportion of any flicker phase noise (and other non white phase noise
> components) to white phase noise.
> The effect of this is to change the ADEV vs Tau plots from their true
> shape.

Care to hand a reference or two for this statement?

Regardless, care must be taken to ensure high enough bandwidth compared 
to the tau for the measurements not to be affected.

Cheers,
Magnus



More information about the time-nuts mailing list