IEC TC49 WG 6 Workshop @ Nihon University 6~7 November 2012

Error-Corrected Measurement of High Frequency Quartz Crystal Units based on IEC Publication 60444-5

Bernd Neubig
Dipl.-Phys. Dipl.-Ing.

Bernd Neubig AXTAL CONSULTING Roemerring 9 D-74821 Mosbach

www.axtal-consulting.com consult@axtal.com phone: +49 (6261) 939834

Content

- **№** Brief History of Publication IEC 60444-5
- Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- Error Corrections
- Algorithms for Parameter Evaluation
- Discussion

Brief (incomplete) History of IEC 60444-5

- First publications proposing error correction methods based on s-parameters in 1984-1985, e.g.:
 - Aubry, J.P. et al.: S.Y. Parameter method for accurate measurement ... up to 2 GHz; 37th Annual Frequency Control Symposium (1983)
 - Smith, W.L.: An overview of a proposed standard method for the measurement ... up to 1 GHz; 6th Quartz Crystal Devices Conference, Kansas City (1984)
 - Smith, W.L.: EIA Standard 512: Some further discussion and comment; 7th Quartz Crystal Devices Conference, Kansas City (1985)
 - Peach, R.C.: Morris, S.E.: A system for precision measurement ...; 39th Annual Freq. Control Symposium (1985)
 - Williamson, R.J,: An Improved Method for Measuring ... IEEE Trans. UFFC (1987)
- TC49 WG6 meeting 04~06 March 1986 in London
 - Peach, R.C. et al.: Proposal for UK Standard: A Reference method of Measurement for Quartz Resonator units... between 1 kHz and 1 GHz
- Number 2 Publications proposing error correction methods for fast measurement based on direct transmission (IEC 60444-1)
 - Neuscheler, F.: Schwingquarz-Daten mit Netzwerk-Analysatoren gemessen; Elektronik (1987)
 - Neubig, B.: Measurement of Quartz Crystal Units up to 500 MHz and above...; 11th Quartz Crystal Devices Conference Kansas City (1989)

Brief (incomplete) History of IEC 60444-5

- TC49 WG 6 Workshop Meeting 17~21 October 1988 in Bled (former Yugoslavia)
 - Scope: Program of measurements agreed in London, 49(Sec)182
 - Comparison of the performances of a variety of measurement systems using a set of test crystals:

•	1	MH	7 (S	I -cı	ıt)
-	_		_ \ \	_ ~	<i>a</i> L <i>i</i>

81 MHz 5th O/T

200 MHz 5th O/T

375 MHz 3rd O/T

• 5 MHz 3rd O/T

125 MHz fund

300 MHz fund

600 MHz fund

• 20 MHz fund

175 MHz 5th O/T

314 MHz fund

943 MHz 3rd O/T

- Software Systems
 - UK S-parameter
 - US S-parameter
 - UK π-network
 - German π -network (classical)
 - German π-network (extended)
- Test fixtures
 - UK S-parameter
 - US S-parameter
 - UK π-network
 - German π -network (coaxial)
 - German π-network (thick film)
 - Yugoslav S-parameter (reflection)
- Test equipment
 - HP 3577A Network analyzer
 - HP 8753A Network analyzer
 - Rohde & Schwarz ZPV Vector analyzer + SMPD Signal generator

Brief (incomplete) History of IEC 60444-5

Conclusions

- All systems give a high level of reproducibility, within 0.1 ppm in frequency (f_s) and 0.1% in resistance (R_1) and motional capacitance (C_1)
- Systematic variations exist between different software systems and test fixtures due to the impact of lead inductance and resistance
- None of the systems emerged as being clearly superior
- Direct Transmission Technique proved to show comparable results to S-parameter based methods

IEC Documents

- ...
- 49(CO) 248 (Draft International Standard)
- 49(CO)268 (Voting Report)
- 60444-5 Ed.1 (1995)

Content

- ➤ Brief History of Publication IEC 60444-5
- **X** Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- **X** Error Corrections
- **X** Algorithms for Parameter Evaluation
- **X** Discussion

Mechanical vs. Electrical Equivalent

Extension of Equivalent Circuit I

>> Butterworth-Van-Dyke (BVD): 1-port model

$$f_s = \frac{1}{2\pi\sqrt{L_1C_1}}$$

$$f_p = \frac{1}{2\pi\sqrt{L_1 \frac{C_1 C_0}{C_1 + C_0}}}$$

Crystal unit with bonds / leads (1-port)

 $L_{S1} \approx L_{C2} \approx 2 \text{ nH} \sim 10 \text{ nH}$ Ceramic packages: $L_{S1} \neq L_{C2} \text{ und } R_{S1} \neq R_{S2}$

Extension of Equivalent Circuit II

 \sim Crystal unit with bonds / leads (1-port): Transformation with series R_s

 \gg Crystal unit with bonds / leads (1-port): Transformation with parallel R_D

Extension of Equivalent Circuit I

■ BVD : Package capacitances added (2-port)

$$C_0 = C_{0Q} + \frac{C_{C1} \cdot C_{C2}}{C_{C1} + C_{C2}}$$

metal package: $C_{C1} \approx C_{C2} \approx 0.5 \text{ pF}$ ceramic package with metal lid: $C_{C1}(\text{upper}) > C_{C2}(\text{downside})$

Crystal unit with package (2-port)

Extension of Equivalent Circuit II

X Crystal unit with package (2-port) - Transformation with R_s

Crystal unit with package (2-port) - Transformation with R_p

Extension of Equivalent Circuit III

Crystal unit multiple resonances (1-port)

Indices 11 = main mode
Indices 1i = unwanted modes =
spurious resonances

Crystal unit multiple resonances (2-port)

Motional Parameters L₁ vs. C₁

Over a frequency range of 4 decades the value of the dynamic inductance L₁ expands over 4 orders of magnitude.

Dynamic capacitance C₁ is always in the order of ... fF, and thus easier to handle

BVD Lossless: crystal reactance jX(f)

R₁=0

BVD with losses: Locus of complex admittance Y = G+jB

Impedance Z₁(f) of R₁, L₁, C₁

Admittance circle Y₁(f) of R₁, L₁, C₁

Admittance circle $Y_{BVD}(f)$ of $(R_1, L_1, C_1) \mid \mid C_0$

3D Presentation of admittance circle

Characteristic frequencies:

- ◆ Series resonance frequency f_s
- Resonance frequency
- Minimum impedance-/ maximum admittance frequency f_m
- ◆ Parallel resonance frequency f_x
- ◆ Anti-resonance frequencyf_i
- ◆ Maximum impedance-/ minimum admittance frequency f_n

Content

- ➤ Brief History of Publication IEC 60444-5
- **X** Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- **X** Error Corrections
- **X** Algorithms for Parameter Evaluation
- **X** Discussion

Traditional Measurement (IEC 60444-1+2) (up to 125 MHz)

^{*}RF Generator and Vector Voltmeter can be combined in a Network Analyzer

Measurement principle

- Calibration with short circuit (instead of XUT):
 - Set Phase $\phi_{AB} => 0$
 - Set amplitude U_{BK} for proper crystal drive level
- Insert XUT and tune to zero phase near U_{B max}:
 - Frequency @ zero phase = resonance frequency f_r
 - Compute resonance resistance R_r from U_{BO} @ zero phase
 - Compute crystal current I_x from U_{BO}

$$\frac{I_x}{mA} = \frac{U_{B0} / mV}{4,57}$$

 \sim Compute L₁, C₁, Q from loaded bandwidth $\Delta f_{\pm 45^{\circ}}$ und R_r

$$L_1 = \frac{(R_r + R_T)}{2\pi \cdot \Delta f_{\pm 45^\circ}}$$

$$C_1 = \frac{\Delta f_{\pm 45^{\circ}}}{2\pi \cdot f_r^2 (R_r + R_T)}$$

$$|L_1 = \frac{(R_r + R_T)}{2\pi \cdot \Delta f_{\pm 45^\circ}} | C_1 = \frac{\Delta f_{\pm 45^\circ}}{2\pi \cdot f_r^2 (R_r + R_T)} | Q = \frac{\omega_r \cdot L_1}{R_r} = \frac{1}{\omega_r \cdot C_1 \cdot Rr} |$$
 Note: Other phase offsets than ±45° are possible.

than ±45° are possible

 $R_r = \left(\frac{U_{BK}}{U_{B0}} - 1\right) \cdot R_T$

- $Measure C_0$ at 1 MHz:
 - with standard LCR meter or in π -network

Limitations at higher frequencies

- \times Traditional measurement neglects the impact of C_0 , which is significant at higher frequencies:
 - The centre of the admittance circle moves up (from real axis)
 - At higher frequencies zero phase moves away from max. |Yx |

Limitations at higher frequencies

- Systematic error in the determination of frequency, resistance and the motional parameters increases
- \gg Traditional method assumes an ideal π -network with
 - termination resistance $R_T = 25 \Omega$ (real)
 - no cross-talk between the XUT ports
- Does not allow
 - to measure series resonance frequency f_s and R₁
 - \blacksquare to determine the effective shunt capacitance C_0 near nominal frequency
 - to determine the additional element values of the extended BVD circuits
- Noes not make use of features of modern network analyzers

Error-Corrected Measurement Techniques of IEC 60444-5

- Full calibration using elements with known characteristic
 - "Through" (short)
 - Calibration resistor (50 Ω or 25 Ω or other), and
 - "Open"
- Choice of Hardware realization
 - S-parameter test set
 - One-port reflection measurement of s₁₁
 - Two-port transmission measurement of s_{21} (and optionally s_{11} and s_{22})
 - Direct Transmission measurement of (voltage) amplitude and phase
 - Error correction allows a less stringent choice of the test fixture
 - lacktriangle Coaxial 50 Ω system, or
 - π -network (traditional), or
 - Modified transmission network
 - Precondition: availability of suitable, sufficiently accurate calibration elements

Error-Corrected Measurement Techniques of IEC 60444-5

- Computation of the complex crystal admittance in a frequency interval around the resonance
 - Calculation method depends on the used hardware version
 - conversion from s-parameters (namely s₂₁) to Y-parameters
 - from gain/phase data
- Computation of the parameters of the equivalent circuit from the admittance data set
 - Choice of different algorithms
 - Least-squares fit of admittance data to equivalent circuit elements
 - Least-squares fit of the admittance circle
 - Iterative 2-point method

Overview

Calibration Measurement Procedure Set Drive Level $f_s < 30$ MHz: measurement at 5 frequencies > 30 MHz, e.g. 30.1 MHz, 30.2 MHz, ..., 30.5 MHz $f_s \ge 30 \text{ MHz}$: 3 pairs equidistant from f_s nom, Co Measurement e.g. $f = f_s(1\pm0.05)$, $f_s(1\pm0.06)$, $f_s(1\pm0.07)$ Choice of Least-square fitting and circle fitting methods: Measurement Frequencies 9...15 frequencies within f_c (1±1/2Q) 2-point iterative method: (2+x), typ. 5 frequencies within $f_c(1\pm1/10Q)$, Data Collection iteratively approaching vicinity of f. Error Correction CW mode, not swept measurement, because of of data - inaccuracy of network analyzers - settling time of crystal $t_r = 2.5 ... 3.5 \cdot Q_t/f$ After setting new frequency, wait for $t_d = t_{instr} + t_r$ Admittance with t_{instr} = settling time of analyzer Calculations Evaluation of the Equivalent Circuit

Parameters

25

Content

- ➤ Brief History of Publication IEC 60444-5
- **X** Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- **X** Error Corrections
- **X** Algorithms for Parameter Evaluation
- **X** Discussion

Proposed Test Fixtures

- - Coaxial reflection or transmission set based on APC3.5 or APC7
 - suited for leaded through-hole crystal units

Proposed Test Fixtures

Direct Transmission Test

Conventional coaxial π -network

IEC 60444-1 (coaxial)

IEC 60444-5 (planar hybrid)

Proposed Test Fixtures

№ Direct Transmission Test (SMD fixture IEC 60444-8)

Calibration Elements

For S-parameter fixtures

SMA (IEC 60444-5)

commercial APC3.5 calibration kit

Calibration Elements

\gg For π -networks

Through-hole THD (IEC60444-5)

SMD (IEC 60444-8)

Content

- ➤ Brief History of Publication IEC 60444-5
- **X** Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- Error Corrections
- **X** Algorithms for Parameter Evaluation
- **X** Discussion

Error Corrections

- S-parameter
 - One-port (reflection) measurement

$$s_{11}^{A} = \frac{s_{11}^{M} - e_{00}}{e_{11} \cdot (s_{11}^{M} - e_{00}) + e_{01}}$$
 with e_{ij} = error coefficients from calibration

- Two-port (transmission) measurement
 - 12 term error model (e_{ij} and e_{ij}')
 - Transforms measured s_{ii}^M parameters to actual (corrected) s_{ii}^A Complex equations see Appendix A.2 of IEC 60444-5
- Direct transmission measurement
 - Error correction performed with instrument calibration (see below)

Content

- ➤ Brief History of Publication IEC 60444-5
- **X** Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- **X** Error Corrections
- Algorithms for Parameter Evaluation
- Discussion

Conversion of test data to admittance Y_x

- - Standard S-parameter to Y-parameter conversion

$$y_{11} = ((1-S_{11})\cdot(1+S_{22}) + S_{12}\cdot S_{21}) / D$$

$$y_{12} = -2\cdot S_{12} / D$$

$$y_{21} = -2\cdot S_{21} / D$$

$$y_{22} = ((1+S_{11})\cdot(1-S_{22}) + S_{12}\cdot S_{21}) / D$$
with D = $((1+S_{11})\cdot(1+S_{22}) - S_{12}\cdot S_{21})$

- Reflection
 Crystal admittance $Y_x = Y_{11}$
- Transmission
 Crystal admittance Y_x = Y₂₁

Conversion of test data to admittance Y_x

Direct transmission method

Computation of impedance from complex voltage ratios $v = V_B/V_A$ with V_A , V_B = output voltage (mag & phase) of A and B channel)

- Calibration with "open"-> cross talk (mainly capacitance)
- Calibration with "Short" and R_{cal}
 -> complex termination impedance R_T
- Crystal impedance Z_x:

$$Z_x = (R_T + R_{cal}) \frac{v_{cal}}{v_x} - R_T = R_T \cdot \left(\frac{v_{cal}}{v_x} - 1\right) + R_{cal} \cdot \frac{v_{cal}}{v_x}$$

-> Crystal admittance Y_x = 1/Z_x

36

- Least-squares fitting method
 - **General LSQ fitting** Minimize error function E

$$E = \sum_{i} W_{i} \cdot \left| Y_{i} - Y_{i}^{M} \right|^{2}$$

with

W_i = weighting factors

$$Y_i$$
 = theoretical value of the admittance Y_i = measured value of Y
$$Y_i^{M} = \text{measured value of Y}$$

$$Y_i = G_0 + \omega C_0 + \frac{1}{R_1 + j\omega L_1 + 1/(j\omega C_1)}$$

Linear LSQ fitting

Uses the following approximations in the vicinity of resonance:

$$\omega C_0 \approx \omega_s C_0 = B_0$$

$$\omega L_1 - \frac{1}{\omega C_1} \approx 2(\omega - \omega_s) L_1$$

for more details refer to Clause 7.1 and 7.2 of IEC 60444-5

- Circle-fitting method
 - In the vicinity of a resonance the admittance $Y_x = G+jB$ can be described by the "circle" equation

$$\left(G - G_0 - \frac{1}{2R_1}\right)^2 + \left(B - B_0\right)^2 = \frac{1}{4R_1^2}$$

which describes a circle with a radius of $1/2R_1$, with the center at $[(G_0+1/2R_1), B0]$

The parameters R_1 , $B_0 = \omega C_0$ and G_0 are varied for a minimum least-squares error

- ➤ Three-Point method (not in IEC 60444-5)
 - Search the three characteristic points A, B and C

- A: $max(Im(Y_x)) => f_s 45^{\circ}$
- B: $max(Re(Y_x)) \Rightarrow f_s$
- C: $min(Im(Y_x)) => f_s 45^{\circ}$
- $M: (max(Im(Y_x))+min(Im(Y_x)))/2$
- -> Thus:

$$R_{1} = \frac{1}{\max(\text{Re}(Y_{x}))}$$

$$Q = \frac{f(B)}{f(C) - f(A)}$$

$$L_{1} = Q \frac{R_{1}}{2\pi f_{s}}$$

$$C_{1} = \frac{1}{2\pi f_{s} \cdot R_{1} \cdot Q}$$

$$C_{0} = \frac{\max(\text{Im}(Y_{x})) + \min(\text{Im}(Y_{x}))}{2 \cdot 2\pi f_{s}}$$

- Two-point iterative method
 - Basic idea:

- BVD model contains 4 elements
- Thus: Measurement of Re(Y_x) and Im(Y_x) at two frequencies ω_1 and ω_2 in the vicinity of the resonance allows an explicit solution for all four element values
- However: The value of C_0 cannot be determined accurately enough from ω_1 and ω_2 . It must be determined at one (or more) frequencies sufficiently apart from the resonance
- With

$$Y(\omega_1) = a_1 + jb_1$$
$$Y(\omega_2) = a_2 + jb_2$$

and its complex conjugates

$$a_i^* + jb_i^* = \frac{1}{a_i + j(b_i - \omega C_0)}$$

the element values can be computed as follows:

Content

- ➤ Brief History of Publication IEC 60444-5
- ➤ Equivalent Circuits of Quartz Crystal Units
- Measurement Methods
 - Traditional Measurement of IEC 60444-1+2
 - Measurement Methods of IEC 60444-5
- Test Fixtures and Calibration
- **X** Error Corrections
- **X** Algorithms for Parameter Evaluation
- **N** Discussion

Pros and Cons One-port S-parameter reflection method

Pros

- Good traceability because only coaxial calibration references are needed
- More sensitivity to low-R₁ crystals than two-port s-parameter method

Cons

- Not suitable for crystals with very high resistance
- Crystal under test is grounded at one terminal
- Electrode to case capacitances have to be measured independently
- Characterizes only 2-terminal devices
- Less accurate at low frequencies
 << 1 MHz</p>
- X Rather expensive test equipment

Pros and Cons Two-port S-parameter transmission method

Pros

- Crystal is evaluated as a threeterminal device: more information available
- High-R₁ crystals are easily measured

Cons

- More complex calibration procedure
- X Less sensitive to low-R₁ crystals
- Less accurate at low frequencies
 << 1 MHz</p>
- Time-consuming test procedure, primarily for lab use
- **Expensive test equipment**

Pros and Cons Direct Transmission method

Pros

- Basic test equipment readily available
- High-R₁ crystals are easily measured
- Fast method, suitable for production
- Accurate at low frequencies
 < 1 MHz</p>

Cons

- ➤ Less sensitive to low-R₁ crystals
- Calibration uses special noncoaxial reference impedances
- ➤ Electrode to case capacitances have to be measured independently, if the case is grounded. If floated, these are included in C₀

Limitations

- Drive Level Dependence (DLD) of the crystal unit
 - Low drive level (start-up)
 - Excessive drive level (crystal current)
 - Miniature and high frequency quartz crystal units are more sensitive to higher drive level (crystal current)
- > Spurious responses close to the main resonance

Main resonance:

$$f_c = 100.000 \text{ MHz}$$

$$R_1 = 30 \Omega$$

$$C_1 = 0.5 \text{ fF}$$

$$C_0 = 5 pF$$

Spurious mode:

$$f_s = 100.005MHz$$

$$R_1 = 90 \Omega$$

$$C_1 = 0.15 \text{ fF}$$

Issues

- Test fixture construction
 - Reference plane
 - Matching to 50 Ω coaxial environment
- Calibration elements
 - Must represent the calibration value at the reference plane
 - Must be characterized over a wide frequency range
 - "Primary" determination of the parameters of the calibration elements
 - Special problem for planar calibration elements (SMD)

and last not least:

- Choice of appropriate equivalent circuit model
 - Which model is closest to the application?
 - Polarity of quartz crystal units?

Thank you for your kind attention